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THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering

CONVERGENCE THEORY FOR UNCONSTRAINED
MINIMIZATION

by

Garth P. McCormick

1. Introduction

Convergence theory for unconstrained minimization centers around
proving which characteristics hold at points of accumulation of "mini-
mizing sequences" generated by unconstrained minimization algorithms.
First order convergence refers to proofs that accumulation points are
stationary points. Second order convergence is concerned with the addi-
tional property that the Hessian matrix at a point of accumulation sat-
isfies the second order necessary condition, namely, that the Hessian
matrix there be positive semidefinite. To a great extent coavergence
proofs for particular algorithms have many common elements. 1n this
paper these results have been synthesized and put in a general context.

Applications are given in Section 5.

2. Step-size Procedures

For the unconstrained minimization problem

min f (x)

s.t. xt HC " (here H is an open set),

a general algorithm usually takes the following form,
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At iteration k , given x, £H , construct a directed

k
curve yk(t) parameterized by the single variable t .
The curve should have the two properties that yk(O) =
X and for t positive and small f[yk(t)] < f(xk)
Use some suitable step size procedure to obtain a valuae
tk and set

M1 = V() -

Most of the time, yk(t) = X + skt , Where Sk is an

nx1 direction of search.

Below are the five step size procedures which will be used at

different times throughout this paper. First, definitions are required.

is a nonascent divection at x if

A vector K

Sk

s:Vf(xk) <0.

A vector d, is a dircetion of nonpositive curvature at x, if
T,2
q VE(x ) <O .

A vecto s is a descent directicon at X, if

T
ska(xk) <0.

A vector d  1is a direction of negative curvature at x = if
T,,2
de f(xk)dk <0 .

The first three step size procedures are called optimal step size

procedures and refer to the following problem: given a point X! H, a

given open set, and given a direction S solve

minimize f{x

+ s t]
t>0 k

k
QD)

subject to the restriction that

~ 4 » HY
te {t>0]x +st-H .
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FIRST LOCAL MINIMIZFR (SSP I):

Set t, to be the first local minimizer for (1).

GLOBAL MINIMIZER (SSP II):

Set tk to be a global minimizer for (1).

LOCAL MINIMIZER WITH SMALLER FUNCTION VALUE (SSP I1I):

Set tk to be any local minimizer for (1) with the additional

property that

f[xk + sktk] < f(xk) .

There are several difficulties associated with the use of SSP T -
SSP II1. 1In the first place, a solution may not exist; i.e., any infi~

mum may be taken on at a point tk where Xy + Stk is on the boundary

of H . Any algorithm which uses these step size procedures is required
to ascertain that a solution exists. (If it does, it is obviously un-
constrained.) Second, even if solutions to SSP 1 and SSP 11 are known

to exist, there is no guarantee usually that the desired t, can be
N

found when the function f(x) is a general not-necessarily-convex func-

tion, A method for solving SSP 1 and SSP 11 is described in |McCormick,
1979]}.

When, for fixed x the function flxk + skt] is convex in

k*%k
t , all three of the first step size procedures reduce to the same prob-

lem.

Most of the published convergence theorems for algorithms solving
the unconstraiied optimization problem rely on either SSP I or SSP 11.
The guaranteed ability to solve SSP 111 has not proved a strong enough

tool for proving these theorems.

A third difficulty which has concerned algorithmists in recent

years 1s that these step size procedures are idealized in that it is

-3 -
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usually impossible to find a local minimizer cxact/;.. Convergence
proofs and rate of convergence proots relying on exact minimization are
thus suspect. Some effort has been put forward in stating weaker re-
quirements on the three optimal step size procedures. This amounts es-
sentially to deciding how far from exact minimization one can come and
still prove the desired theorems. The reader is referred to [Polak,

1971], [Cohen, 1972], and [McCormick and Ritter, 1974) for more on this

subject.

When f(x) 1is strictly convex, it is easy to show that the ty

specified by the optimal step size procedures is the same and that an
algorithm can be specified to guarantee finding the value (if it

exists). For methods of conjugate directions, the optimal step size
procedure is necessary in accelerating the rate at which the algorithm
converges to the global minimizer. Many unconstrained minimization al-
gorithms (e.g., Newton's method, and some quasi-Newton methods) do not de-
pend upon optimal step size procedures for their rate of convergence prop-
erties. For these it is possible to use step size procedures of a type
introduced by [Armijo, 1966]. Some generalizations of his approach are

described below. As before, assume that xks_H , a given open set. Let

Sk’dk be directions, where Sp is one of nonascent and dk is one of

nopascent and also nonpositive curvature. Let 0< a< 1 be a pre-

assigned constant.

FIRST ORDER ARMIJO (SSP IV):

Set tk = Z-I(k) , where i(k) is the smallest integer from

i=0,1,... such that

e I
xk + bk2 ¢ H ,
and

-1 -1 T
f[xki-skZ ] - f(xk) < a2 ska(xk) .

In order for a finite value of 1 satisfying the inequality to

exist, it is sufficient that 8, be a direction of descent., wWhen

-4 -
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certain conditions on the sequence {sk} are met, it is possible to

prove that points of accumulation of the sequence {xk} are stationary

points. When variations of Newton's method are used which involve a
direction of nonpositive curvature, it is possible to prove convergence
(see [McCormick 1977)] and Theorem 4) to a second order point when the

following step size procedure is used.

SECOND ORDER ARMIJO (SSP V):

Set tk = Z-i(k) , where 1i(k) 1is the smallest integer from

i=0,1,... such that

i) = X + sk2

- -i -i/2 _
yk(z + dk2 € H

9’
and

fly, @ H1 - £ < a[ssz(xk) + 3 divzf(xk)dk] 27t

In order for a finite value i(k) to exist, it is sufficient that

Sk’dk be nonascent directions and in addition, that ska(xk) < 0

whenever Vf(xk) # 0, and

T2
de f(xk)dk <0

whenever Vf(xk) =0 .

3. First Order Convergence

Theorem 1, Consider any algorithm for minimizing the continuous-
ly differentiable function £(x) 1in the open set H which has the fol-

lowing properties: the algorithm is a nonascent algorithm, i.e.,

f(xk+1) < f(xk) for all k ; consecutive points are of the form X =

+1
T .
X + S where ska(xk) < 0 ; and tk is found by soiving the step

size problem SSP I. Let xeH be a point of accumulation of {xk} and

K1 a set of indices such that 1lmkeK1 X

for all kt:Kl . lLet s be any point of accumulation of {sk) for

. X . Assume that ||5k|| <M

-5 -
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ke K, . Then

SWER) =0 .

Proof: Let K, Q_Kl be a set of indices such that s =

lim, . s, . 1f s = 0 , the theorem is obviously true. Assume other-
kehz k

wise.

Case (i). There exists a set of indices K3 - K2 such that

llmk€K3 tk = () . Because the optimal step size problem generates tk s

0 = VE(x +s.t) s, -
Taking the limit {(by assumption each Hskll is uniformly bounded above
and tk > 0) ,
0=v&"s
Case (ii). Here, liminfk€K2 £, = t >0 Let K, Q:Kz be a
set of indices such that ty > t/2 for all ké:K4 . Assume the con-

trary of the theorem conclusion, i.e., Vf(i)TE < -§ < 0. Then there

is a neighborhood N(§) about x and a set of indices KS Q_K4 such

that for x ¢ N(x) and k¢ KS s Vf(x)Tsk <=§/2<0.

Let t >0 be a scalar small enough such that for all 0 <t <

A

t , all ke KS .

X, + s

K kt € N(x) .

Pick t* = min(t/2,t) . Then
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£(x) - £(xy) = ] G ) = E(x)] < ) [£(x, 1) = £(x,)] (the nonas-
k=0 kek cent prop-
5
erty)
< Z lf(xki-skt*)- f(x, )] (because of the step- (2)
: k -
kCK5 size procedure)
= Z VE(x, +s T)T s, t* (Taylor's Theorem with Q<T<t¥)
k~ k k k _ ==
£K
5
< Y =(8/2)tk =
kek

5

This contradiction shows the truth of the theorem for Case (ii).

Theorem 2 [Convergence of SSP I1]: Consider the same hypotheses
and statements as in Theorem 1 except that the step size procedure SSP

IT is used. Then the same conclusions hold.

Proof: Nothing in the proof of Theorem 1 changes except it is

noted that Inequality (2) follows when SSP 1II is used because tk is

chosen as a global minimizer in H of f(x) along the vector Sk ema-

nating from Xy oo
Comment: Unfortunately, the same proof cannot be used for SSP

IT", It is theoretically possible that if tk is chosen to be any lo-

cal minimum |albeit with value less than f(xk) ], Inequality (2) may
not be valid.

Under similar assumptions, convergence to a stationary point can

be shown if the Armijo step size procedure SSP 1V is used,.
Theorem 3: Suppose SSP IV is used as the step size procedure.
Let x€H be a point of accumulation of {xk} and Kl a set of indi-

ces such that X, +x for ke Kl . Assume that fE‘C1 , that there

exists a value B>0 such that

I aieg el
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for all kz,K1 , that f'(xk)sk < 0 for each k , that the sequence

{sk} is uniformly bounded (kziKl) , and that

limSupk€Kl £'(x)s, / ]|f'(xk)]| Hskli = -§<0. (4)

f'(x) =0 .
I’rouj’:s  There are two cases to consider.
Case (i). The set of indices {i(k)} for k: K is uniformly

1

bounded above (by a number 1). Because the sequence {f(xk)} is mono-
tone decreasing and cach f'(xk)sk < 0, it follows by summing appro-

priately that

- o =i(k) B -i(k)
f(x) - f(x)) < } w2 i( f'(x,)s, = )' w2 f'(x,)s, .
0 o LR K’ Sk

Further, it follows from (3), (4), and the assumed uniform bound on

i(k) that !

=10 1

- 2
£'(x)s, < -abp2 Hf'(xkﬂ] R

for each k¢ Kl . It follows directly, then, that f'(xk) > 0 for

ke K; , and by the continuity of f'(x) that f'(x) =0 .

Case (ii). There is a subset of indices K, g'Kl such that

likaK i(k) = » , If the cause for termination of iteration k were
-i(k)+

that Xy + sk2 1)+ ¢ H infinitely often, then since i(k) » « for

kr,K2 , and because the {sk} are uniformly bounded, it follows that x

is on the boundary of H . Since H 1is an open set, Xx¢H , a contra-

diction to the theorem assumption. Thus, without loss of generality,

assume for all kf:K2 s
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£ (s, 2 M 4 o (s, fl27E 00T

—1 (k)+!

,—i(k)+1> s, -

= f(x +s 2

K K - f(xk) > a2

-i(k)+1

Transposing, using (4) and dividing by HskH 2 yields

o(HskHZ—i(k)+l) / Z_i(k)+1”5kn > (=D E(x )8 / Hski
> (1-a)Hf'(xkﬂl .

Because the {sk} arc uniformly bounded, taking the limit as k »

for ktﬁKz yields the desired result.

4. Second Order Convergence

Some algorithms are concerned with producing accumulation points
which have in addition to the stationarity property the property that
their Hessian matrices are positive semidefinite. So far only algo-
rithms which compute explicit second derivative information have been
modified to produce this kind of convergence. It is theoretically pos-
sible that by using a f{inite difference approximation technique, similar

convergence results could be obtained.

Algorithms which produce second order convergence must check the
Hessian matrix at each iteration. 1If it is indefinite, a nonascent di-
rection of nonpositive curvature must be computed as well as a nonascent
direction. A convenient step size rule to use, then, is SSP V.

If the vector 8y forms a sufficiently small angle with the
negative gradient vector, and if the direction of nonpositive curvature
acts sufficiently like an eigenvector associated with the minimum eigen-

value, then an interesting convergence theorem can be proved.

Ty
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Theorem 4 (Second Order Convergence of SSP V [McCormick 1979]):

2 . U -
Assume that [ C in H . Suppose that in minimizing { in H an
algorithm with the descent property uses SSP V an infinite number of

times. |The descent propeply is simply that  ((x ) < f(xk) for all

k+1
k .] Let Kl be the infinite set of indices for which SSP V is used,
and let ~ denote a point of accumulation in H of {xk} for k¢ K1 .
lLet RQ C hl be a set of 1n§1ces such that 11mk€K2 X =X . Some reg-
ularity properties on the sequences {sk} and {dk} are required to
hold. There exists a value >0 such that
Ifs, 1l > BHf'(xk)H , for all keK, . (5)
There is a value G&>0 such that
f'(x,) s
k k
Limsup, - = =8 <0, (6)
wk, TG Ts, T
There is a value y >0 such that
T min T min
" ., el N 1) . »
dkf (xk)dk (Lk ) £ (xk)ek Y , for all k: kz \ (7
where erl" is an eigenvector of f"(xk) associated with its minimum
eigenvalue. The sequences {sk} and {dk} are uniformly bounded.

Then: x  is a stationary point, i.e.,
£'(x) =0,
and _
f“(x)
is a positive semidefinite matrix with at least one cigenvalue cqual to

Zero,
Proof: There are two cases to consider.

Case (i). The integers li(k)} for k in K, are uniformly

P4

bounded above by some value 1 ., Because of the descent property, it

- 10 -
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follows that all points of accumulation have the same function value,

and

. -t

LR A CH A E

P = 1(x)) = 7 i
=() ke K,

Kk

%

-

[}
E

]

£51 g
3

v o= il [Y'(xk)skvf &ﬁiﬁ'(xk)dk]

ro!—-

.-

T - A,
S B . (2L omi - mir i
w \ i l:-w-,;,x'(xk)} +2 (("\_ “) "'(xk)uk ]‘r] . s -

Sinee (%) is finite, and since cach term in braclets is less than or

equal to zero for cach ki K, , it follows that ' x) = 0 , and that

)
;I_ 1I"(x) ¢ . =0, where o is some accumulation point of {len}
min min min Kk
for Kk: K, .
Case (ii). There is a subset K3 € K, such that
lin:,h¥ i(ky = - . Because of the definition of (k) , then either
~i(k)+
v, (TERTLy gy
K

ar

_ LGl S TC L R R (W

(ka(‘ ) f(xk) a2 If (Ak)hk+'? dkf (xk)dk] . (8)
If the former condition held infinitely often, then because

=i (k)+I - _ . . -~

vk(; ) *x , also (kv k3) it follows that «x 1is on the boundary

of H . Since H is an open set, x¢H , 4 contradiction to the the-
orem hypothesis,  Therefore, without loss of generality, (8) can be con-

sidered to hold for all  k: K3 .

)
Because O and because the sequences  {s boand {d, } are

k k

assumaed to be wniformly bounded. the left-hand side of the inequality

(8) can be written

e AR o Y Dy w Y

i i E
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f'(xk)skz_i(k)"'1 + f'(xk)dkz-[i(k)-lllz
T
L[ ,-iC)+ .—li(k)—l]/z] " —1(k)+1 (1001172
+ 21}k2 +d, 2 f (xk)[skz +d,2 ]
+ 0(2'i(k)+1)

Combining like terms and incorporating where appropriate into

o(2_i(k)+l) yields |using the fact that f'(xk)dk <01,
,mi(k)+Ly _ ' . 1 T, -i(k)+1
o(2 ) (=)} £ (xk)bk + 2 dkf (xk)dk 2
2 1 min T min -i(k)+1
- - [ £ "
> (=D -88l £ (x ) [|° + 3 (ek ) £ (x )ep |2 ,
Jusing (5), (6), and (7)]. Dividing by 2-i(k)+1 , taking the limit as

k>~ (for kL.K3) yields, by the argument in Case (i), the desired

result.

A different strategy for minimizing a function whose Hessian is
not always positive definite is to compute a direction of nonpositive or
negative curvature and optimize in that direction. The theorem below is

useful [or proving convergence of algorithms using this strategy.

Thecorem &:  Assume as in Theorem 1, and in addition assume that
f(x) 1is twice continuously differentiable in H . Then in addition to

the conclusion of Theorem 1,
sv2E(x)s > 0 .

I'ruoft  Let K2 C K, be a set of indices such that s =

1
tm s - If s=0 the theorem is obviously triue. Assume otherwise,
2
Case (i). There exists a set of indices K3 c K2 such that
1im t. = 0 . Because the optimal step size procedure gencrates t, ,
kLK3 k k

- 12 -
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2y
S +s 3 >0,
U R LR
Takiag the limit viclds the desired resull Lo case (1),
Case (ii). Here, “mi"fk»i(z t, = t 0 . Let Kag ]2 be a
set of indices such that tk > /2 for all k- K4 . Assume the con-
I S
trary of the theorem conclusion, i.e¢., that sl‘v'-f(x)s = =" - 0 . Then
there is a neighborhood N(X) about x aund a set of indives K,) C K,
p ~+
k such that for x @ N(x) , and kzt K3 . s:(\./zf(x)sk L =52 <0

let t - 0 be a scalar small enough such that for all 0- t-t |

+—

all ke l'\5 . i
Xk + skt v N(x) .
Pick t* = min(E/Z R t) . Then

f(x) - I(x”) = ) Il(ka)-f(xk)l < ) ||(xk+l)-:(xk)l (the noa-
k=0 ktKS ascent
properiy)
) lf(xk+ skt*) - f(xk)] (because of the step sice
k: K procedure)

5

- T T,,2 2 _] . .
s tA Y] . . ® U av SR
) [Vf(xk) skt + S f(xk% bk()hk(( )72 ¢l n\lm. ;
3 kt. I\S theorem with

U [ l*)

: T,,2 2 |
. 3 . * : s x NN
< ),’ skv f(xk+skl)hk(t )7 /2 (fact thit Sk ka) )
kL.I\S

C) =t = -,

kt’KS

This contradiction proves the theorem for Case (ii).

FE e e aame |
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5. Applications

The well-known method of steepest descent chooses as the direc-

tion of search each iteration the negative gradien. vector, i.e., S

—V[(xk) . That points ol accumulation generated vy this method

are stationary points follows directly from Theorem 1. The conclusion

v - _
is that slVf(x) = 0 , whicn means that ' 1 (x)[;” =0 .

lt is easy to cite other applications of these theorems to prove

convergence of algorithms. They essentially shift the burden of proof

to that of showing that the hypotheses ot Lhe theosems are as satisfied.

[n many cases this is difficult., ‘the application 10 be pursued here is
the modilicd Newton method. This type of algorithm (see [McCormick
1976] tor a survey of these methods) is one which modifies the classical
Newton procedure when a poiat is encountered where the Hessian matrix (s

not positive definite,  The modification considered here is one which

uses  noooptimal steps at each iteration, It is not recommended since

it 1s computationally prohivitive but is considered to illustrate the
application ot the general theorems,

T 2 . .
et E (Y IE = 5 i(xk) be an eigeavalue-eigenvector reduction

Kk’ k

of the Hessian matrix at X i.e., Ek(l-:l()l = 1 , and \k is a diago-

nal matrix. Let c: be the jtit column of Ek . Set Yy S X - In
general, for the jth step of the kt/i iteration, {ind y?+l by solving
the step size problem (either SSP I or SSP 1)
minimize f(ys ' e%t)
t™0 J J

; k
subject to t ¢ {t | yj ' v?t vt

— X

k
The sign is chosen so that ¢ ej [s a nonascent direction at vy, .

- 14 -
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This is to be done for j=1,...,n . The last point generated is
taken to be xk+l .

Cheorem 6:  Assume that f(x) is twice continuously differen-
tiable in the open set H . Suppose that the algorithm just described
is applied to the unconstrained minimization of f in H . Assume that
there is a single point of accumulation (call it X ) generated by the
algorithm. Then £'(x) = 0, and sz(i) is a positive semidefinite

matrix.

Freoj: Let E  be a matrix of accumulation of Ek with columns

{EJ} . It follows from Theorem 1 (2) that f'(;c)é1 = 0 . Since by as-

sumption {yg} has the single point of accumulation X , from Theorem 1

(2), f'(§)52 = 0 also. Inductively it is trivial to show that

f'(i)Ej =0, for j=l,...,n . Since .he ej'

s are linearly indepen-
dent, it must be the case that f'(x) = 0 .
T

A

and thus that V2f(§) is a positive semidefinite matrix. Q.E.D.

Similar reasoning shows that e sz(g)éj >0, for j=1,...,n ,

Practical modified Newton algorithms for minimizing unconstraineod
functions differ in their strategies when faced with an indefinite Hes-
sian, and in their computation of the estimates of the "positive part"
of the Hessian and directions of nonpositive curvature. The theorems
presented herein should be a help in proving convergence of such algo-
rithms by isolating the components of the proof which are independent of

the linear algebra used to generate the necessary guantities.
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